Natural Language Processing: Enhancing Human-Computer Interaction
Abstract
Natural Language Processing (NLP) has made significant strides in improving human-computer interaction (HCI) by enabling machines to understand and generate human language. This study explores recent advancements in NLP, focusing on techniques such as transformers, sequence-to-sequence models, and attention mechanisms. By analyzing various applications, including chatbots, language translation, and sentiment analysis, we demonstrate the enhanced capabilities of NLP in facilitating seamless and intuitive interactions between humans and machines. Our findings highlight the potential of NLP in transforming HCI and suggest future directions for research and development in this field.
Keywords
References
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998-6008.
- Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
- Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems, 27, 3104-3112.
- Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing. IEEE Computational Intelligence Magazine, 13(3), 55-75.
How to Cite
License
Copyright (c) 2024 Journal of Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
Similar Articles
- Hugo Tom, Sarah Brown, James Miller, Integrating Robotics and the Internet of Things (IoT) for Smart Automation , Journal of Technology: Vol. 2 No. 2 (2024): Advances in Artificial Intelligence
- Robert Lee, Anna Smith, Explainable AI: Enhancing Transparency and Trust in Artificial Intelligence Systems , Journal of Technology: Vol. 2 No. 2 (2024): Advances in Artificial Intelligence
- Sarah Wilson, John Davis, AI-Driven Autonomous Vehicles: Enhancing Safety and Efficiency , Journal of Technology: Vol. 2 No. 2 (2024): Advances in Artificial Intelligence
- Jessica Taylor, Mark Anderson, AI-Powered Predictive Maintenance in Manufacturing: Enhancing Efficiency and Reducing Downtime , Journal of Technology: Vol. 2 No. 2 (2024): Advances in Artificial Intelligence
- Maria Johnson, Alan Carter, AI in Healthcare: Revolutionizing Patient Diagnosis and Treatment , Journal of Technology: Vol. 2 No. 2 (2024): Advances in Artificial Intelligence
- David Brown, Lisa Green, AI-Driven Cybersecurity: Enhancing Threat Detection and Response , Journal of Technology: Vol. 2 No. 2 (2024): Advances in Artificial Intelligence
- Hugo Tom, Emily Thompson, Michael Lee, Enhancing Autonomous Robotic Navigation Through Reinforcement Learning , Journal of Technology: Vol. 2 No. 2 (2024): Advances in Artificial Intelligence
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Hugo Tom, David Kim, Emily Parker, Advanced Threat Detection Using Machine Learning Algorithms , Journal of Technology: Vol. 2 No. 1 (2024): The Future of Renewable Energy Technologies